ROBUST NONSTATIONARY REGRESSION by

نویسنده

  • Peter C. B. Phillips
چکیده

This paper provides a robust statistical approach to nonstationary time series regression and inference. Fully modified extensions of traditional robust statistical procedures are developed that allow for endogeneities in the nonstation-ary regressors and serial dependence in the shocks that drive the regressors and the errors that appear in the equation being estimated. The suggested estima-tors involve semiparametric corrections to accommodate these possibilities, and they belong to the same family as the fully modified least-squares (FM-OLS) is not always smooth, and this paper develops generalized function methods to cope with this difficulty in the asymptot-ics. The results given here include a strong law of large numbers and some weak convergence theory for partial sums of generalized functions of random variables. The limit distribution theory for FM-LAD and FM-M estimators that is developed includes the case of finite variance errors and the case of heavy-tailed (infinite variance) errors. Some simulations and a brief empirical illustration are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust estimation for structural spurious regressions and a Hausman-type cointegration test

This paper analyzes an approach to correcting spurious regressions involving unit-root nonstationary variables by generalized least squares (GLS) using asymptotic theory. This analysis leads to a new robust estimator and a new test for dynamic regressions. The robust estimator is consistent for structural parameters not just when the regression error is stationary but also when it is unit-root ...

متن کامل

Cointegrating Regressions with Messy Regressors: Missingness, Mixed Frequency, and Measurement Error

We consider a cointegrating regression in which the integrated regressors are messy in the sense that they contain data that may be mismeasured, missing, observed at mixed frequencies, or have other irregularities that cause the econometrician to observe them with mildly nonstationary noise. Least squares estimation of the cointegrating vector is consistent. Existing prototypical variancebased ...

متن کامل

Nonstationary Nonlinear Heteroskedasticity in Regression1

This paper considers the regression with errors having nonstationary nonlinear heteroskedasticity. For both the usual stationary regression and the nonstationary cointegrating regression, we develop the asymptotic theories for the least squares methods in the presence of conditional heterogeneity given as a nonlinear function of an integrated process. In particular, it is shown that the nonstat...

متن کامل

A Spurious Regression Approach to Estimating Structural Parameters∗

Economic models often imply that certain variables are cointegrated. However, tests often fail to reject the null hypothesis of no cointegration for these variables. One possible explanation of these test results is that the error is unit root nonstationary due to a nonstationary measurement error in one variable. For example, currency held by the domestic economic agents for legitimate transac...

متن کامل

Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes.

In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008